-SUPPLEMENT-

Computational discovery of human coding and non-coding transcripts with conserved splice sites

Dominic Rose^{a,f,l}, Michael Hiller^j, Katharina Schutt^{b,c,d}, Jörg Hackermüller^{a,c}, Rolf Backofen^{f,g,h}, Peter F. Stadler^{a,e,c,i,k} ^aBioinformatics Group, Department of Computer Science, University of Leipzig, Germany. ^bLIFE – Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany. ^cFraunhofer Institut for Cell Therapy and Immunology, AG RNomics, Leipzig, Germany. ^dDepartment of Molecular Immunology, University of Leipzig, Germany. ^eInterdisciplinary Center of Bioinformatics, University of Leipzig, Germany. ^fBioinformatics Group, Department of Computer Science, University of Freiburg, Germany. ^gCentre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany. ^hCentre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany. ⁱInstitute for Theoretical Chemistry, University of Vienna, Austria. ^jDepartment of Developmental Biology, Stanford University, USA. ^kSante Fe Institute, Santa Fe, USA ^lCorresponding author: dominic@bioinf.uni-leipzig.de

Supplement

Supplemental Figures and Tables

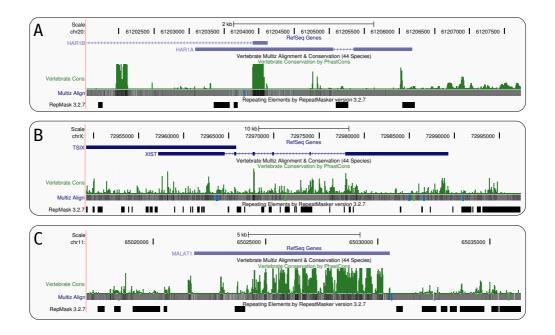


Fig. S1. Sequence conservation of lncRNAs. The figure shows three representative human lncR-NAs with different sequence conservation among vertebrates as indicated by the PhastCons profile. (A) HAR1A, chr20:61,203,089-61,206,182. (B) XIST, chrX:72,957,220-72,989,313. (C) MALAT-1, chr11:65,021,809-65,030,513. Long ncRNAs are generally poorly conserved which mostly excludes sequence conservation as key feature for their computational prediction.

	coding	5'UTR	3'UTR	non-coding	ESTs
Donor	226,686	$14,\!167$	533	516	621,355
Acceptor	226,272	11,274	407	527	619,807

Table S1

Existing hg18 splice site annotation. The table gives of the data basis at the time of starting the work. Numbers refer to the union of the RefSeq, UCSC Genes, and mRNA UCSC Genome Browser tracks. We distinguish between coding, UTR, non-coding and EST-confirmed sites. Minimal required intron length: 20 nt.

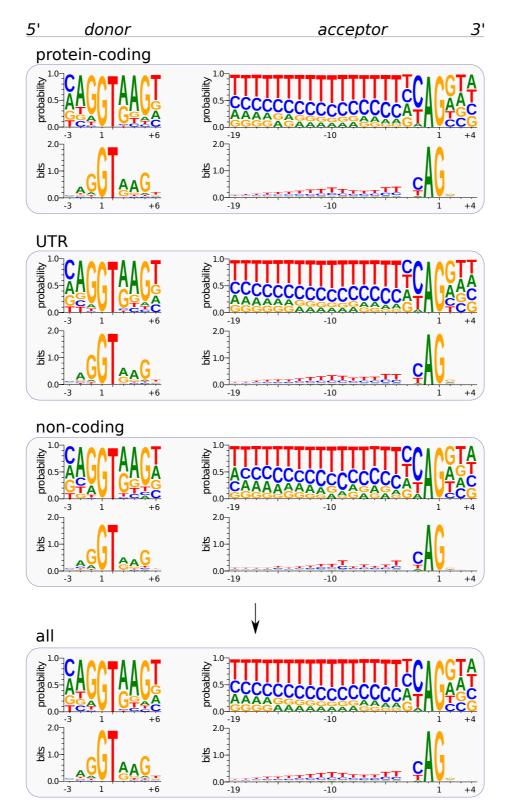


Fig. S2. Sequence logos. The figure illustrates nucleotide frequencies of real splice sites. It shows that splice sites of non-coding genes are highly similar to sites of protein-coding genes or UTRs. Therefore, we trained our SVM models with a mixture of all real splice sites. We expect that our approach yields novel non-coding splice sites although the majority of training samples belongs to protein-coding genes.

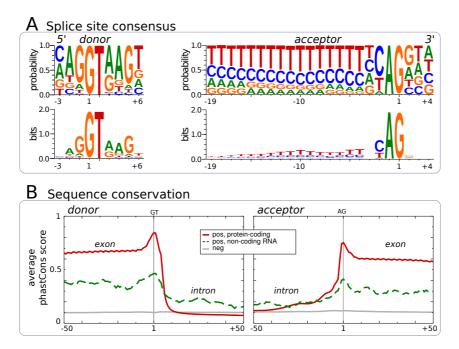


Fig. S3. Sequence conservation of splice sites. (A) The sequence logo shows the preferred nucleotides at each position around real splice sites. (B) The PhastCons score profile for the [-50, 50] interval shows that the average sequence conservation decreases downstream of the donor GT and increases upstream of the acceptor AG, both for ncRNAs and coding genes. In contrast to ncRNAs, protein-coding genes exhibit a much higher exonic conservation level. The figure is based on our training set which consists of "positive" and "negative" samples representing real (pos) and pseudo (neg) splice sites.

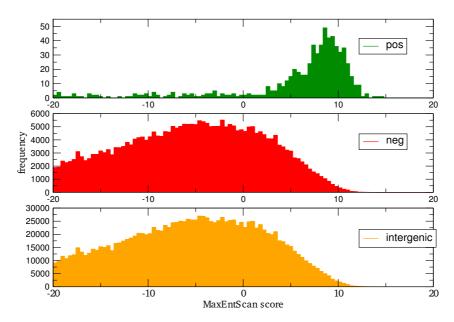


Fig. S4. Distribution of MaxEntScan scores. The histograms are based upon scores for real (pos), false (neg), and intergenic splice sites from chr21.

Table S2. Feature selection of the donor model. The table outlines the SVM performance of several feature combinations. Each column represents an independent training event based on all marked ('x') features. Here, we only present a small subset of combinations. Overall, we have tested many more. Ideally, an SVM model is trained with few features and only a few support vectors (*totaLsv*) are necessary to yield high AUC values. As expected, the performance improves with more features until we reach a 'stable' AUC of 0.96. Simple features, like GC-content or MPI, and even Shannon entropy only marginally affect the donor model and thus have been neglected. The highlighted column (dark grey) and the associated features represent an optimal tradeoff between effort necessary to train the SVM and resulting predictive power of the model.

MaxEntScan-score	2	ζ	X	2	2	C C	2	C C	2	5	х	5	х	:	х	5	х	5	х	
Tree LogOdds	2	c			>	ς.	>	ς.	2	2	х	2	х		х	2	х	2	х	:
Fly LogOdds			Х	2	3	c	2	c	2	2	х	2	х		х	2	Х	2	х	
Median LogOdds							2	2	2	2	х	5	х		х	5	х	2	х	
No. sequences									2	2	х	5	х		х	5	х	2	х	
No. sequences (filtered)											х	5	х		х	5	х	2	х	:
PhastCons slope & avg													х		х	5	х	2	х	:
avg GC-content															х	5	х	2	х	:
MPI																	х	2	х	:
Shannon Entropy																			х	:
	TP	\mathbf{FP}	ΤP	\mathbf{FP}	TP	\mathbf{FP}	ΤP	\mathbf{FP}	TP	\mathbf{FP}	TP	\mathbf{FP}	TP	FP	TP	\mathbf{FP}	TP	\mathbf{FP}	ΤP	\mathbf{FP}
p > 0.5	86.72	13.96	86.70	14.00	87.42	12.92	86.60	12.40	86.80	10.10	88.96	4.92	89.04	4.22	89.22	4.40	89.38	4.68	89.44	4.76
0.8	73.22	6.66	73.76	6.82	73.62	5.14	72.06	4.58	75.12	3.96	84.10	1.86	83.86	1.36	83.92	1.34	83.98	1.42	83.86	1.48
0.9	45.18	1.20	40.04	1.10	53.52	1.36	59.40	1.94	65.26	1.78	80.72	0.88	80.92	0.72	80.86	0.72	80.82	0.70	80.84	0.72
0.93	35.84	0.40	29.20	0.56	43.80	0.56	51.70	1.04	61.02	1.34	78.76	0.58	79.34	0.60	79.46	0.64	79.48	0.60	79.36	0.62
0.95	30.24	0.18	23.52	0.44	38.14	0.32	44.28	0.54	56.78	1.00	76.24	0.44	78.00	0.46	78.20	0.54	78.10	0.50	78.02	0.54
0.98	20.42	0.04	14.94	0.16	27.86	0.12	32.28	0.16	45.06	0.38	68.16	0.18	74.40	0.18	74.32	0.16	73.76	0.14	73.56	0.14
AUC	0.93	244	0.95	239	0.93	341	0.93	374	0.9	477	0.96	614	0.96	639	0.96	651	0.96	660	0.96	661
total_sv	31,	159	32,3	314	29,9	914	29,9	910	27,	073	19,7	724	19,0	040	18,9	924	18,9	954	19,0	028

Table S3. Feature selection of the acceptor model. The table outlines the SVM performance of several feature combinations. Each column represents an independent training event based on all marked ('x') features. Here, we only present a small subset of combinations. Overall, we have tested many more. Ideally, an SVM model is trained with few features and only a few support vectors $(total_sv)$ are necessary to yield high AUC values. As expected, the performance improves with more features until we reach a 'stable' AUC of 0.94. Simple features, like GC-content or MPI, and even Shannon entropy only marginally affect the donor model and thus have been neglected. The highlighted column (dark grey) and the associated features represent an optimal tradeoff between effort necessary to train the SVM and resulting predictive power of the model.

																01				
MaxEntScan-score	х		х	2	х	:	х	:	2	2	х		х		х		х	:	х	:
Tree LogOdds	х				х	:	х	5	2	2	х		х		х		х	2	x	:
Fly LogOdds			х	2	x		х		2	2	х	-	х		х		х		х	
Median LogOdds							х		2	2	х	-	х		х		х		х	
No. sequences									2	2	х	-	х		х		х		х	
No. sequences (filtered)											х		х		х		х	:	x	
PhastCons slope & avg													х		х		х		х	
avg GC-content															х		х		х	
MPI																	х		х	
Shannon Entropy																			х	
	TP	FP	TP	\mathbf{FP}	TP	FP	TP	\mathbf{FP}	TP	\mathbf{FP}	TP	\mathbf{FP}								
p > 0.5	81.78 9	9.74	77.46	10.20	82.00	9.48	82.04	9.60	83.16	10.08	83.60	9.76	84.44	9.44	84.42	9.30	84.48	9.34	84.48	9.28
0.8	74.12	4.14	66.50	3.78	74.20	4.32	74.28	4.14	74.72	4.20	75.90	3.80	77.40	3.56	77.42	3.52	77.56	3.50	77.60	3.42
0.9	69.04	2.38	58.24	1.56	69.32	2.34	69.40	2.30	69.94	2.36	71.96	1.98	73.20	1.80	73.04	1.74	73.14	1.84	73.08	1.84
0.93	67.38	1.78	52.68	0.98	67.72	1.86	67.76	1.76	67.78	1.68	69.62	1.48	70.94	1.34	71.10	1.30	71.12	1.38	71.12	1.36
0.95	65.60	1.28	48.14	0.70	65.74	1.46	66.02	1.42	66.24	1.42	67.62	1.18	69.26	1.10	69.36	1.12	69.44	1.10	69.40	1.10
0.98	61.28 (0.86	34.74	0.32	61.20	0.84	61.40	0.86	61.04	0.80	62.88	0.66	64.28	0.72	64.28	0.70	64.50	0.70	64.64	0.70
AUC	0.924	45	0.90)30	0.92	249	0.92	255	0.9	309	0.93	858	0.94	106	0.94	113	0.94	123	0.94	125
total_sv	25,23	33	35,4	403	25,2	247	25,4	155	25,	368	24,7	758	24,0	061	24,2	217	24,1	183	24,2	256

Donor SVM model performance comparison. We randomly generated five sample sets of equal size and trained donor SVMs. The model with the best performance according to its AUC value (set 1) was used for classification. The comparison provides evidence that random sampling only marginally affects the performance.

set	1		2		3		4		5		
	TP	\mathbf{FP}	TP	\mathbf{FP}	TP	\mathbf{FP}	TP	\mathbf{FP}	TP	\mathbf{FP}	
p>0.5	89.04	4.22	87.80	4.78	88.14	5.00	87.80	4.54	87.38	4.18	
0.8	83.86	1.36	82.86	1.76	83.52	1.66	82.66	1.58	82.80	1.46	
0.9	80.92	0.72	80.30	0.94	80.80	0.86	80.04	0.82	80.14	0.62	
0.93	79.34	0.60	78.82	0.58	78.96	0.72	78.78	0.68	78.80	0.44	
0.95	78.00	0.46	77.46	0.48	77.20	0.40	77.44	0.58	77.44	0.26	
0.98	74.40	0.18	72.98	0.26	72.68	0.08	73.22	0.26	72.80	0.14	
AUC	0.	.9638	0	.9605	0	.9627	0.	9607	0	9616	
total_sv	18	8,719	18,639		19,006		18	8,989	19,063		

Table S5

Acceptor SVM model performance comparison. We randomly generated five sample sets of equal size and trained acceptor SVMs. The model with the best performance according to its AUC value (set 1) was used for classification. The comparison provides evidence that random sampling only marginally affects the performance.

set	1		2		3		4		5	
_	TP	\mathbf{FP}	TP	\mathbf{FP}	TP	\mathbf{FP}	TP	\mathbf{FP}	TP	\mathbf{FP}
p>0.5	84.44	9.44	84.38	8.84	84.14	8.38	84.36	7.92	84.84	8.16
0.8	77.40	3.56	77.02	3.36	76.28	2.94	77.20	3.28	76.84	2.78
0.9	73.20	1.80	72.86	2.00	71.58	1.64	72.78	1.94	72.82	1.52
0.93	70.94	1.34	70.74	1.44	69.30	1.16	70.98	1.34	70.62	1.14
0.95	69.26	1.10	68.32	1.10	67.50	0.84	69.08	0.94	68.62	0.86
0.98	64.28	0.72	63.44	0.54	62.70	0.40	64.46	0.30	63.78	0.46
AUC	0	.9411	0.	0.9387		.9390	0	.9407	0.9394	
${\rm total_sv}$	2	3,394	23	3,530	2	3,492	2	3,410	23	3,452

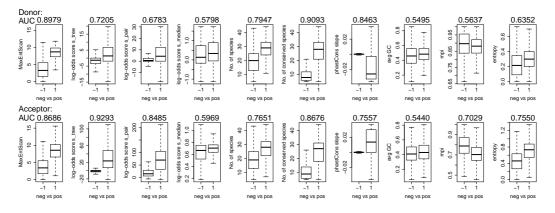


Fig. S5. Score distributions of splice site features. For both donors (top row) and acceptors (bottom row) the figure depicts the score distributions for all positive and negative SVM training samples. AUC values indicate the ability of each feature to distinguish between real and false splice sites (1 would be the optimum). The MaxEntScan and the improved tree-based log-odds scores are key features of our approach. Some ordinary features, like GC-content, badly separate the training data on their own. The AUC values reveal that the novel tree-based log-odds substitution scores (second boxplot from the left) are superior to the pairwise method of previous studies (third boxplot).

Prediction of splice sites in human intergenic regions. The table gives the number of predictions made for different SVM classification confidence cut-offs. Confirmed splice sites are supported by human ESTs and/or have been experimentally validated by available RNA-seq data (Wang et al., 2008).

	n	ovel donors		novel acceptors						
p	total	confirmed	%	total	confirmed	%				
0.5	927,693	17,250	1.86	2,497,067	18,213	0.73				
0.8	309, 192	9,565	3.09	886,180	10,474	1.18				
0.9	$155,\!890$	6,898	4.42	$468,\!934$	$7,\!280$	1.55				
0.93	$111,\!992$	5,911	5.28	$344,\!063$	6,012	1.75				
0.95	83,323	5,235	6.28	$258,\!302$	5,059	1.96				
0.98	38,877	3,777	9.72	$120,\!670$	3,202	2.65				
0.99	22,225	2,982	13.42	68,583	2,353	3.43				

approach	dot	nor	acceptor			
	p > 0.5	p > 0.9	p > 0.5	p > 0.9		
AceView	6,215	2,552	5,719	2,321		
CONTRAST	2,201	$1,\!688$	$1,\!652$	$1,\!195$		
Ensembl	740	554	583	381		
Gencode (auto)	121	90	80	60		
Gencode (manual)	327	191	364	176		
GeneID	3,046	1,362	3,803	1,784		
Genscan	7,038	2,456	8,836	3,331		
N-SCAN	2,863	1,703	2,297	1,258		
SGP	2,695	1,515	3,109	1,714		
VEGA	1,909	873	1,768	797		
U	15,661	5,644	18,846	7,318		

Number of predicted splice sites that coincide with other gene-finding approaches. \cup denotes the number of splice sites that are found by us and the union of the listed methods.

Table S8

Evolutionary conservation of predicted exons. The table lists the number of exon candidates with respect to lower bounds of the number of conserved species in both splice sites at different SVM class-probabilities. Here, while restricted to splice sites with p > 0.5, p denotes the average of both splice site SVM probabilities. See Fig. S6 for a heatmap of these data and further interpretation.

No. of species	exons						
	p > 0.5	p > 0.9					
>10	216,442	31,300					
>15	157,828	$26,\!580$					
>20	90,341	18,007					
>25	$38,\!051$	8,444					
>30	$11,\!425$	$2,\!499$					
>35	1,507	325					
>40	87	13					

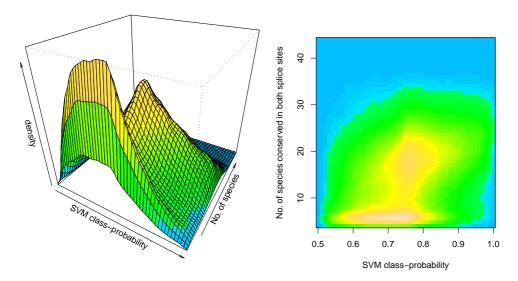


Fig. S6. Density heatmaps. The figure illustrates the number of species that are conserved in sequence alignments of two particular splice sites enclosing predicted exons in dependence of their average SVM class-probability. Requiring at least ten conserved species in both splice sites seems to be appropriate to filter for reliable exons. Below ten, we assume to observe either false positives, or more intuitively explaining the second peak at five species, genes that are specific to certain subgroups, e.g. primates or teleosts.

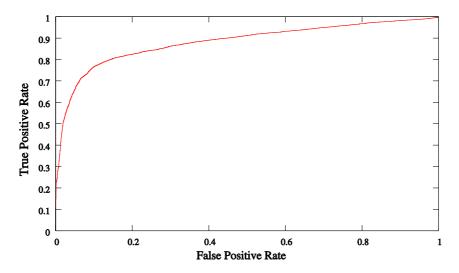


Fig. S7. Performance of the exon-SVM on an independent set of RefSeq exons. Similarly to our procedure of assembling novel exons by searching for pairs of compatible splice sites at intergenic regions, we assembled a set of 9,333 real and 4,722 false exons from the RefSeq database. On this independent test-set which was not used in any previous training step (neither the splice site SVM nor the exon-SVM), we obtained an AUC of 0.88. At p > 0.9 we obtained a true positive rate of 38% (3,528/9,333) and a false positive rate of 1% (57/4,722).

Number of predicted exons that are already annotated by existing gene-finding approaches. We distinguish between all exons that passed the exon-SVM (8,832 exons) and the fraction of predicted exons that are part of genomic clusters (734 exons). \cup denotes the number of predicted exons that are found by us and the union of the listed methods. Overall, 10% of our predicted exons are already listed by competing gene-finding approaches. Remarkably, this increases to 29% if we consider clustered exons.

approach	no. d	of predicted exons	
	all	clustered	non-clustered
AceView	346	59	287
CONTRAST	381	147	234
Ensembl	92	25	67
${\tt Gencode}~({\rm auto})$	89	30	59
Gencode (manual)	207	57	150
GeneID	250	90	160
Genscan	415	127	288
N-SCAN	374	130	244
SGP	271	100	171
VEGA	163	46	117
U	877	216	661

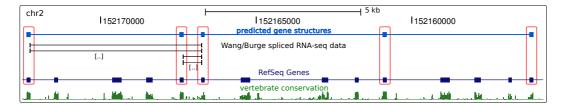
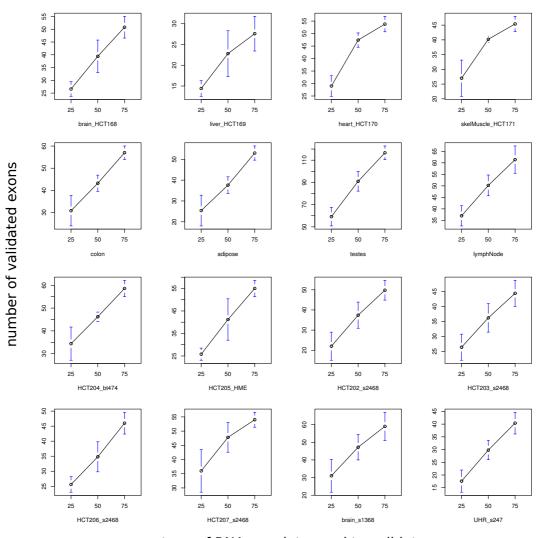


Fig. S8. *De novo* prediction of exons in the *NEB* gene. Due to excessive alternative splicing at this locus, RefSeq does not provide a complete list of all isoforms but, by the time of SVM training, released a novel consensus gene structure containing additional exons which were not part of our prior training set. This update validated all five predicted exons at the depicted locus. RNA-seq data confirms some exon-exon junctions and indicates the existence of exemplary exon skipping isoforms.

Overview of the number of exon-SVM-derived exons with short read support. Here, we only consider reads of high confidence which Wang *et al.* could uniquely map to the genome (≥ 2 mismatches). To be counted, at least two reads have to fit to our exon over their full length (32 nt). We distinguish between reads of different tissues or cell-lines but also list the total number of read-supported exons as the union over all reads. (A) Total number of exons with intersecting reads. (B) Number of exons without a known exon at the opposite strand according to the UCSC RefSeq and UCSC Genes track. This gives a more reliable count that corrects for ambiguous cases: the reading direction of randomly primed reads is unknown and in cases of two opposing exons in sense and antisense direction it is unclear which of them is actually indicated by the particular reads. (C) Read-indicated exons without any read at their 200 nt up-/downstream flanking region (this ensures that our predicted exon is not part of a larger exon but may also wrongly discard some true positive exons, especially in cases of intronically hosted transcripts (e.g. miRNAs) in close proximity to the exon. The intersection of (A-C) constitutes a reliable but very conservative estimate of the number of short read confirmed exons. As outlined, we applied stringent filters to resolve ambiguities resulting from randomly primed short read data, and most likely considerably underestimate the true number of read-confirmed exons.

		А		I	3	С		A+E	3+C
		S	VM c	lass-p	oroba	bility	thre	shold	
GEO accession	tissue/cell-line	0.5	0.9	0.5	0.9	0.5	0.9	0.5	0.9
GSM325476	brain	621	48	137	18	109	13	58	7
GSM325477	liver	370	27	78	9	77	6	34	3
GSM325478	heart	479	40	111	16	113	13	60	7
GSM325479	skeletal muscle	513	46	117	24	97	14	53	11
GSM325480	colon	615	56	147	27	102	18	61	15
GSM325481	adipose	615	52	163	25	103	16	59	13
GSM325482	testes	872	98	301	61	187	40	132	35
GSM325483	lymph node	685	63	201	37	111	16	70	15
GSM325484	BT474	593	62	203	38	118	14	71	11
GSM325485	HME	590	59	177	33	120	17	69	13
GSM325486	breast	586	53	158	29	112	16	59	13
GSM325487	MCF-7	583	60	184	35	88	11	49	8
GSM325488	MB435	570	56	166	34	88	14	54	12
GSM325489	T47D	575	56	204	41	98	14	64	13
GSM325490	MAQC human	606	61	170	26	122	18	70	14
GSM325491	MAQC UHR	495	40	122	22	100	8	48	7
	U	1,613	193	782	140	736	103	469	87



percentage of RNA-seq data used to validate exons

Fig. S9. The number of confirmed exons increases almost linearly with the number of reads. We split the data of Wang *et al.* to subsets containing 25%, 50%, and 75% of all reads and computed the corresponding number of confirmed exons. We repeated this procedure five times to avoid biases of a single random split. Since the number of confirmed exons increases almost linearly with the number of reads, it is likely that future, probably deeper, sequencing projects provide further experimental evidence for our approach.

References

Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P., and Burge, C. B., 2008. Alternative isoform regulation in human tissue transcriptomes. *Nature* 456: 470–476.